摘要:为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4–Tiny算法的YOLOv4–Tiny–4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4–Tiny的两尺度预测增加至4尺度预测,并且在网络模型的颈部引入空间金字塔池化(spatial pyramid pooling,SPP)模块,以丰富特征融合信息,增大网络模型的感受野。其次,以煤矿巷道中的行人、电机车、信号灯及碎石作为检测目标,创建矿井电机车多目标检测数据集,并分别采用K–means和K–means++聚类分析算法对数据集重新聚类;对比分析结果表明,K–means++算法具有更好的聚类效果。最后,通过对传统YOLOv4–Tiny算法的消融实验,进一步展示了不同改进措施对网络模型检测性能的影响;并在电机车运行的煤矿巷道场景中,对比分析了YOLOv4–Tiny–4S算法与其他几种算法的检测性能。实验结果表明:YOLOv4–Tiny–4S算法能够准确检测并识别出图像中的各类目标,其平均精度均值(mean average precision,mAP)为95.35%,对小目标“碎石”的平均精度(average precision,AP)为86.69%,相比传统YOLOv4–Tiny算法分别提高了12.38%和41.66%;改进后算法的平均检测速度达58.7 帧/s(frames per second,FPS),模型内存仅为26.3 Mb,YOLOv4–Tiny–4S算法的检测性能优于其他算法。本文提出的基于YOLOv4–Tiny–4S矿井电机车多目标实时检测方法可为实现矿井电机车的无人驾驶提供技术支撑。
摘要:水工机械装备(如闸门、拦污栅等)长期服役于水域环境,其结构表面会不可避免地产生锈蚀。对于重要的关键受力结构件,如果不能准确检测其锈蚀的严重程度,会导致其维修加固不及时,进而直接威胁受损结构周围人员的生命安全。目前,对水工机械装备锈蚀特征识别主要以人工目视检测为主,容易导致视觉疲劳、主观性较强、锈蚀程度的检测准确率不高等问题。为此,本文提出以VGG–16(visual geometry group,VGG)网络为基础、融合注意力机制和双线性池化的锈蚀等级评估方法。首先,利用RGB(red green and blue)和HSV(hue saturation and value)两种色彩空间中不同分量包含锈蚀图像特征不同的特点,将不同色彩空间作为不同支路网络的输入,使其能够充分利用不同色彩空间的图像特征;其次,在两个支路网络中嵌入注意力机制,通过注意力机制的可训练权重对锈蚀图像的特征进行重标定,调整权重,聚焦于最相关的特征进行学习;再次,采用双线性池化融合不同支路提取的特征,使网络聚焦于最相关的细粒度图像特征,提高网络模型对锈蚀图像细微差异特征的利用;最后,通过盐雾锈蚀实验获取锈蚀图像数据,并在数据集上对本文方法进行消融和对比分析。结果表明,相较于原模型及其他主流算法,改进后模型的分类准确率达到了0.953,精确率、召回率、F1系数等评价指标均有大幅提升,本文方法对于不规则锈蚀图像特征能够取得更好的评估效果,可以转化应用于工程实践。